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Abstract. The mass flux density and velocity of the solar

wind at polar latitudes can provide strong constraints on solar

wind acceleration mechanisms. We use plasma observations

from the first polar passage of the Ulysses spacecraft to inves-

tigate this question. We find that the mass flux density and ve-

locity are too high to reconcile with acceleration of the solar

wind by classical thermal conduction alone. Therefore accel-

eration of the high-speed wind must involve extended deposi-

tion of energy by some other mechanism, either as heat or as a

direct effective pressure, due possibly to waves and/or turbu-

lence, or completely non-classical heat transport.

Introduction

The mechanism or mechanisms of solar wind acceleration

remain one of the fundamental unsolved problems of space

physics (e.g., Barnes" [1992]). The solar wind originates in

the solar corona, a complicated system consisting of two qual-

itatively different kinds of regions, dense regions confined by

closed magnetic field configurations, and more rarefied re-

gions on open field lines. Coronal holes are extensive re-

gions of very low density, containing magnetic field of a sin-

gle polarity. By the mid-1970s it had become clear that high

speed solar wind primarily originates in coronal holes (cf. the

book edited by Zirker [1977], especially the article of

Hundhausen [1977]).

From that time a widely accepted model of the global mor-

phology of solar wind and its magnetic field has emerged.

Near the ecliptic plane the average solar wind speed is usually

of order 400 km/s. in the inner heliosphere the speed often

varies by several hundred km/s or more; in the outer helio-

sphere the fluctuations tend to be much smaller, but the aver-

age remains about the same [e.g., Gazis et al., 1989; Mihalov

et al., 1990; Barnes, 1990]. However, near solar minimum,

when the interplanetary current sheet becomes flattened and
near-equatorial [e.g., Levy, 1976; Hundhausen, 1977; Smith et

al., 1978], in situ observations show a strong latitudinal gra-

dient in velocity, increasing to higher latitudes [Gazis et al.,
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1989; Mihalov et al., 1990; Barnes, 1990]. The observations

provide confirmation for the familiar model in which the speed

increases with distance (or with "heliomagnetic latitude") from

the current sheet. This current sheet becomes aligned with the

solar equatorial plane as sunspot minimum approaches, but

deviates rapidly from that orientation after minimum. More

recently, high-latitude Ulysses observations have confirmed

this general picture [McComas et at., 1995; Phillips et al.,

1995]. During the south polar pass of 1994 the speed of the

solar wind flowing from the south polar coronal hole is con-

sistently in the range 700-800 km/s.

Nearly twenty years ago the study by Munro and Jackson

[1977] (MJ) of a single, well-developed, long-lived polar
coronal hole seemed to settle the issue of whether thermal

conduction could be the sole energy supply to the solar wind.

From SKYLAB white-light coronagraph observations they de-

duced the density structure of the hole, and its geometrical

variation with altitude. Then, assuming that far from the Sun

the polar mass flux density would be the same as the average

observed at the same heliocentric distance in the ecliptic

plane, they used mass conservation to deduce a velocity pro-

file for wind expansion within the hole. Consideration of the

momentum equation then led them to conclude that in order to

drive the flow, more energy was required than classical thermal

conduction could supply.

More recently, however, these conclusions were questioned.

Observations of solar Lyman ot have been interpreted as indi-

cating that the polar mass flux density is lower than the equa-

torial average [Kumar and Broadfoot, 1979; Lallement et al.,

1985]. This led Lallement et al. [1986, subsequently referred

to as LHM] to revisit the MJ model, using varying assump-

tions about the polar mass flux density, and the density profile

within the hole. It turns out that the results are quite sensitive

to the polar mass flux density. According to their analysis,
the observations could be consistent with either of two ex-

treme hypotheses: (I) classical thermal conduction is adequate

to drive the flow, or (2) the Munro-Jackson conclusion, i.e.,

that substantial additional energy and/or momentum deposi-

tion is required. Clearly, unambiguous determination of the

solar wind mass flux density at polar heliographic latitudes is

essential to the resolution of this dilemma. In the present pa-

per we apply Ulysses plasma analyzer data [instrument de-

scribed by Bame et al., 1992] from the first polar passage (late

1993 through the end of 1994) to this problem.
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Median values of the proton flux densityFigure 1.

(normalized to I AU), for each solar rotation from late 1993 to

the beginning of 1995, given as a function of heliographic

latitude.

Observations of the Polar Mass Flux Density

Figure 1 shows median values of the proton flux density

(normalized to 1 AU), for each solar rotation from late 1993 to

the beginning of 1995, given as a function of heliographic

latitude. The observation period covers the entire south polar

pass of Ulysses, from the time the spacecraft emerged into
continuous fast solar wind until the time it first reencountered

slow wind, corresponding to latitudes ranging from just above

30 degrees to -80 degrees south. The median values of the

measured flux density Fp vary from 1.8 to 2.4xl08 protons
cm -2 s-l during this period. However, the higher values of this

range come from the earlier part of the sampling period, when

the measured flux showed relatively large variations. This fact

suggests that the higher medians are associated with temporal

variations, and that the best values for the quiet-time south

polar proton flux density are in the range Fp = 1.9-2.2x108
protons cm -2 s -_.

Before relating these measurements to the LHM analysis,

two further points should be raised. The first is that He++ com-

prises about 15-20% (by mass) of the solar wind outflow.

Figure 2 shows the medians (binned by solar rotation) of the

ratio Fa/F p, where F,_ is the He ++ particle flux density, versus
time for the south polar passage. This quantity is nearly con-

stant, fluctuating from 0.04 to 0.045. The formal LHM analy-
sis treated a pure hydrogen plasma, which would require a pro-
ton flux density of 2.2-2.6x10 _ protons cm -2 s-I to match the

observed polar mass outflow. The other salient point is that

the LHM study made use of a range of coronal electron density

profiles inferred for a polar hole observed in 1973. It is very
plausible that this profile is typical of the polar coronal near

solar minimum, although this has not been established in de-

tail, and in particular has not yet been established for the

south polar coronal hole at the time of the Ulysses polar pas-

sage. However, the published LHM results (cf. Figs. 3 and 4 of

that paper) indicate that 'their conclusions are considerably

more sensitive to variations in the mass flux density than to

variations in the coronal density profile.

Constraints on Solar Wind Acceleration Processes

Keeping the above statements in mind, it is reasonable to

inquire what the particle flux densities observed at Ulysses
imply for solar wind acceleration in the context of the LHM

model. These flux densities are lower than those observed at

lower latitudes, but definitely higher than the value 1.6×10 a

crn -2 s-I for the polar flux density inferred from Lyman ot

observations by Lallement et al. [1985].

The parametric study of LHM focused on what they consid-

ered the possible extremes of (normalized) flux density, Ixl0 s

cm -2 s-1 and 3x10 _ cm -2 s-_. From Ulysses observations we

may say conservatively that the appropriate flux density to

use in relationship to the LHM models is Ft,>2xl0 _ cm -2 s -I.

Their analysis, essentially an extension of the MJ study, be-

gins with deducing a solar wind speed profile from mass con-

servation, using assumed radial density profiles and profiles of

coronal-hole area. Next, assuming no force other than grav-

ity, the momentum equation is used to deduce a radial profile of

pressure, and thence temperature. In many such models the in-

ferred mode[ temperature increases outward for several solar

radii. If the real temperature behaves in this way, it is clear

that extended heating must occur. Alternatively, acceleration

by some additional mechanism such as Alfv6nic turbulence

could be acting. In either case, a positive gradient in the

model temperature is strong evidence that classical heat con-

duction by itself is not sufficient to accelerate the solar wind at

polar latitudes.

Figures 3-4 of the LHM paper show model-temperature pro-

files obtained under various assumptions. Clearly for high

flux density (3×108 cm -2 s-t) a positive temperature gradient is

found for all assumptions about the coronal density profile.

The opposite conclusion applies to low flux density (1×10 s

cm -: s-I) , i.e., the temperature gradient is fairly flat or nega-

tive for all assumptions about the coronal density profile.

LHM give one model for an intermediate flux density (2×108

cm -2 s-l), which shows a strong positive model-temperature

gradient. Therefore the Ulysses result that the appropriate

value of flux density for such models is well above 2x108 cm -2

s -1 strongly favors the conclusion that classical thermal con-

duction is inadequate to drive the solar wind and that an ex-

tended (at least over several solar radii) nonthermal energy

flux is required.

Quite independently of the LHM models, purely energetic

arguments favor extended energy addition to the wind.

Conservatively speaking, Ulysses observations show that in

the polar regions the solar wind velocity is greater than 750

kin/s, and the mass flux density is greater than 3.7×10 -16 gm

cm -2 s-1 so that the energy flux density (normalized to I AU) is

greater than 1.0 erg cm -2 s -l. Extrapolated back to the Sun, the

total energy flux would then be > 4.6x104 q)a erg cm -2 s-I,

where q_A is the area expansion factor, i.e., the factor by which

.O6

.O4

.O2

I I I
1993.5 1994 1994.5 1995

Time

Figure 2. Median values of the ratio of the He ++ particle flux

density Fc, to proton flux density F, for each solar rotation for
the same period as in Figure I.
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the expansion of the flow tube exceeds that predicted for an r -2

expansion, q_a is not known precisely, but values of -3 to 6

are estimated for high-speed flows from coronal holes near the

ecliptic [Hundhausen, 1977]. Therefore at the Sun the total

energy flux density F r is greater than 1.4 to 2.8x105 erg cm 2

s -_. At least this much energy (actually somewhat more, to ac-

count for gravitational potential energy) must be provided to

the flow by whatever mechanism drives the wind. The energy

flux density due to classical conduction is F c < 1.3x104 q(T,r)

where q(T,r)=(T/106) 7t2 Id In T/d In rl (cgs units, T in Kelvin).

So a conservative upper limit to the ratio of thermal

conduction total energy flux density is Fc/F v< 0.05-0.1

q(T,r). Therefore if classical thermal conduction flux is to be

comparable to the total energy flux the coronal electron

temperature must be T> 1.9-2.4 x 106 Id In T/d In r[-2/7; the

logarithmic term is typically somewhat less than unity for

models in which thermal conduction dominates the energetics.

Therefore an electron temperature of at least 2x106 K would be

required for the classical conduction flux density to be

comparable to the total energy flux density; such a high

temperature is unlikely in a coronal hole [e.g, Hundhausen,

1977; Geiss et al., 1995].

Conclusions

The mass flux density and velocity of the solar wind ob-

served by Ulysses during its south polar passage are too high

to reconcile with acceleration of the solar wind by classical

thermal conduction alone. Therefore acceleration of the high-

speed wind must involve extended deposition of energy by

some other mechanism, either as heat or as a direct effective

pressure, due possibly to waves and/or turbulence, or com-

pletely non-classical heat transport [e.g., Scudder and Olbert,

1983; Shoub, 1988].
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